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Abstract

We present a method for prediction of functional sites in a set of aligned protein sequences. The method
selects sites which are both well conserved and clustered together in space, as inferred from the 3D
structures of proteins included in the alignment. We tested the method using 86 alignments from the NCBI
CDD database, where the sites of experimentally determined ligand and/or macromolecular interactions are
annotated. In agreement with earlier investigations, we found that functional site predictions are most
successful when overall background sequence conservation is low, such that sites under evolutionary
constraint become apparent. In addition, we found that averaging of conservation values across spatially
clustered sites improves predictions under certain conditions: that is, when overall conservation is relatively
high and when the site in question involves a large macromolecular binding interface. Under these condi-
tions it is better to look for clusters of conserved sites than to look for particular conserved sites.

Keywords: protein domains; prediction of functional residues; evolutionary conservation

Despite recent growth of the protein sequence and structure
databases, there remains only a small fraction of proteins
whose functions have been experimentally characterized. It
is sometimes possible to infer the function of uncharacter-
ized proteins by comparison to the sequences or structures
of functionally annotated homologs. Common descent does
not necessarily imply functional similarity, however (Hegyi
and Gerstein 1999; Devos and Valencia 2000; Todd et al.
2001) and functional annotation transferred from one ho-
mologous protein to another can result in incorrect func-
tional assignment. To verify functional assignments one
must examine the common features conserved among ho-
mologs and attempt to identify functionally important sites.

Several investigators have considered the problem of
functional site prediction using multiple sequence align-
ments (Casari et al. 1995; Andrade et al. 1997; Hannenhalli

and Russell 2000; Li et al. 2003). Casari et al. (1995), for
example, applied principal component analysis to a vector
representation of protein sequences in a multidimensional
“sequence space,” to derive subfamily-specific residues in-
volved in protein function. Andrade et al. (1997) proposed
a rigorous clustering algorithm based on a self-organizing
map as a means to identify protein subfamilies and retrieve
characteristic sequence patterns. As functional similarity
can be inferred from clades in phylogenetic trees, some
methods of functional site prediction use phylogenetic
analysis to identify residues associated with functional di-
vergence (Lichtarge et al. 1996; Sjolander 1998; Aloy et al.
2001; Madabushi et al. 2002; del Sol Mesa et al. 2003). The
evolutionary trace (ET) method, for example, delineates in-
variant residues responsible for subgroup specificity by par-
titioning the dendrogram into an increasing number of sub-
groups of similar sequences with subsequent analysis of
their three-dimensional (3D) structures (Lichtarge et al.
1996; Aloy et al. 2001; Madabushi et al. 2002).

Despite the efforts in this field, the accuracy of functional
site predictions remains low, suggesting that it may be
worthwhile to consider other aspects beyond sequence con-
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servation. Use of structure information is one possibility,
because knowledge of the protein structure is necessary for
predicting many aspects of protein function (Teichmann et
al. 2001). Given that functionally important surface regions
often contain residues with specific characteristics, some
methods attempt to identify functional sites on the basis of
physicochemical properties of individual residues, their
electrostatic contribution, and their location in the 3D struc-
ture (Jones and Thornton 1997; Tsai et al. 1997; Elcock
2001; Bartlett et al. 2002). Landgraf and colleagues (2001),
for example, offered an automated method for functional
site prediction by identifying 3D clusters of conserved resi-
dues using residue-specific (regional) and global similarity
scores.

Here we present a method which is based on the assump-
tion that the structural location of functional sites is con-
served between homologous proteins and that functionally
important residues tend to cluster together in space, forming
three-dimensional residue clusters or surface patches. In the
method considered here, each residue is assigned a score
which depends on its own conservation in homologs and the
conservation of residues in its spatial neighborhood, as
judged from the analysis of known structures within a given
protein family. We hypothesize that high-scoring sites are
more likely to be involved in specific binding or catalysis,
and that one may identify functionally important residues
even in the absence of structural data on protein–ligand or
macromolecular complexes.

We tested the method on a benchmark of 86 protein do-
main families, including families with a wide variety of
functions and sequence diversity. To assess the accuracy of
functional site predictions, we applied a rigorous receiver
operating characteristic (ROC) test (see Materials and
Methods). This gave us a means to compare different scor-
ing schemes directly, by calculating the actual number of
correctly predicted functional sites at a given level of false
assignments. We show that including information about
conserved structural features in some cases helps to make
more accurate predictions, especially for DNA/RNA bind-
ing macromolecular interfaces. When sequence diversity is
low, spatial averaging also helps to detect functional sites
against the high background of sequence conservation.

Results

Functional site predictions based on sequence
conservation and sequence conservation
with spatial averaging

Functionally relevant residues in proteins are often con-
served among all or a majority of members of a protein
family. Accordingly, these residues can be identified from
the analysis of positional conservation in multiple sequence
alignments using different sequence conservation measures.

Here, we employed information content and maximum
likelihood estimates of the expected number of substitutions
per position (substitution rate), as calculated by the PAML
package (Yang 1997). We found that substitution rates
performed better in terms of detecting functional sites than
information content; the recognition rate at 5% false
positives (R0.05) for the whole test set was 0.32 and 0.25
using PAML substitution rate and information content,
respectively. This difference is especially pronounced
for highly divergent domain families and could be due to
the fact that the substitution rate calculated by PAML
takes into account the phylogenetic history of the protein
family.

To determine whether clustering of conserved residues in
space and consideration of their solvent accessibility help to
identify functional sites, we compared scoring functions
based on sequence conservation alone and sequence con-
servation with spatial averaging (see Materials and Meth-
ods). Figure 1 shows the ROC30 statistic for the contact-
based scoring function with an optimized distance cutoff
(the distance cutoff yielding the best performance for each
domain family) and with a fixed distance cutoff (less than 6
Å), plotted against ROC30 values obtained with a sequence-
based scoring function. As can be seen from the figure, the
contact-based scoring function with optimized distance cut-
off detects more functional sites for 73% of domain families
compared to sequence-based scoring function. Because the
value of optimal distance cutoff is difficult to determine a
priori for each domain family, in our work we used the 6 Å
distance cutoff, which has been shown to yield the best
performance.

Figure 1. The ROC30 statistic for each domain family obtained with the
contact-based scoring function (equation 1) and optimized distance interval
cutoff is plotted vs. ROC30 values calculated with the original sequence-
based scoring function (triangles). The ROC30 statistic for each domain
family obtained with the contact-based scoring function (equation 1) and
the distance cutoff less than 6 Å is also shown.
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Functional site predictions for different
functional categories

Analyzing different functional categories we found that
conserved contacts and solvent accessibility are particularly
useful for predicting DNA/RNA-binding and protein–pro-
tein binding interfaces. The difference in recognition accu-
racies can be represented by ROC plots (Fig. 2A,B), which
show the fraction of false positives for any given recogni-
tion rate. For example, at 5% of false positives the structure-
based scoring function detects about 20% of DNA/RNA-
binding and 14% of protein–protein binding sites, whereas
sequence-based scoring function yields a recognition rate of
9%–10%. An improvement in the ROC30 statistic upon in-
cluding structural information is also observed for DNA/
RNA binding and protein–protein binding sites, as can be
seen from Table 1. It was shown earlier that the level of
conservation of DNA-binding and protein–protein binding

sites and, as a consequence detection accuracy, depends on
the conservation of the entire protein sequence (Luscombe
and Thornton 2002; Nooren and Thornton 2003). Given that
the average sequence identity in our test families is about

Figure 2. The fraction of correctly identified DNA/RNA binding sites (A), protein–protein binding sites (B), and catalytic sites (C) is plotted against the
fraction of incorrectly identified functional sites for different scoring functions: the original sequence-based scoring function (solid line) and contact-
solvent-accessibility-based scoring function (equation 2; dashed line). The contact-based scoring function (equation 1) is used in case of catalytic site
prediction. The contacts are defined between residues separated by a distance of 6 Å.

Table 1. Average ROC30 values calculated with different
scoring functions for different functional categories of test
domains: catalytic, DNA/RNA-binding and protein-protein
binding domains

Catalytic
sites

DNA/RNA
binding

sites

Protein-
protein

interfaces All

Subst. rates 0.49 0.32 0.18 0.37
Subst.

rates+contacts 0.48 0.38 0.20 0.38
Subst. rates

+contacts+solv.acc. 0.42 0.44 0.22 0.37
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Table 2. Names of 86 CDD families used together with the pdb codes of their first structures, average sequence identities of family
alignments (average number of different amino acid types per column, Nobs), alignment lengths, and the overall numbers of functional
sites

Name
Pdb
code %identity/Nobs Length Domain description

Number of
functional sites

35EXOc 2kzm 21/12 101 3�–5� exonuclease 5 (5C)
53EXOc 1xo1 35/8 213 5�–3� exonuclease 8 (8C)
ACTIN 1dga 34/9 305 Actin 24 (18P)
ADF 1cof 24/10 115 Actin depolymerisation factor/cofilin-like domains 10 (10P)
alkPPc 1elz 40/6 325 Alkaline phosphatase homologs 13 (13C)
Aminopeptidase 1b65 30/6 59 L-Aminopeptidase domain 2 (2C)
AP2 1gcc 47/5 59 DNA-binding domain found in transcription regulators in plants 11 (11D)
AP2Ec 1qtw 28/8 211 AP endonuclease family 2 13 (9C)
Arfaptin 1i4d 25/6 193 Arfaptin domain 11 (11P)
BPI 1bpl 16/11 131 BPI/LBP/CETP domain 13
C1 1faq 28/11 43 Protein kinase C conserved region 1 8 (8C)
C2 1dqv 26/14 63 Protein kinase C conserved region 2 4 (4C)
CASc 1cp3 37/8 203 Caspase, interleukin-1 � converting enzyme homologs 16 (16C)
CBM9 1i82 39/6 145 Family 9 carbohydrate-binding module 18
CH 1aoa 22/13 75 Calponin homology domain 36 (36P)
ChtBD3 1aiw 30/9 38 Chitin/cellulose binding domain 2
cNMP (CAP_ED) 1rgs 19/14 91 Cyclic nucleotide-monophosphate binding domain 4
CPT 1qhx 38/3 170 Chloramphenicol phosphotransferase 21 (15C)
DED 1a1z 22/7 61 Death effector domain 9 (9P)
DEXDc 1d9x 25/15 96 DEAD-like helicases superfamily 9
DSPc 1vhr 28/8 118 Dual specificity phosphatases 6 (6C)
DSRM 1di2 26/13 56 Double-stranded RNA binding motif 12 (12D)
ENDO3c 1muy 22/9 125 Endonuclease III 19 (8C)
eu-GS 2hgs 38/5 442 Eukaryotic glutathione synthetase 29 (7C)
fer2 1b9r 26/15 60 2Fe-2S iron-sulfur cluster binding domain 10
FGF 1qqk 32/8 113 Acidic and basic fibroblast growth factor family 22 (22P)
FH 1e17 57/7 52 Forkhead, winged helix 5 (5D)
FlpREC 1flo 34/4 338 Flp recombinase domain 7 (7C)
FYVE 1vfy 35/9 55 FYVE, zinc-binding domain 13
G-� 1azt 39/10 304 G protein �-subunit 61 (52P)
GlcAT-I 1fgg 44/6 213 �, 3-glucuronyltransferase I domain 12 (12C)
Glm_e 1ccw 51/4 368 Coenzyme B12-dependent enzyme glutamate mutase 14 (14C)
GuKc 1gky 27/10 130 Guanylate kinase homologs 15 (10C,4P)
GYF 1gyf 26/7 56 GYF-domain 16 (16P)
H15 1hst 33/11 77 linker histone 1 and histone 5 domains 15 (15D)
H2A 1aoi 65/4 114 Histone 2A 7 (7D)
HDc 1f0j 18/16 91 Metal-dependent phosphohydrolases with conserved ‘HD’ motif 4 (4C)
HECTc 1c4z 29/8 312 HECT domain 29 (14C,15P)
HELICc 1d2m 17/16 130 Helicase superfamily C-terminal domain 16 (13D)
HPT 1qsp 21/10 86 Histidine Phosphotransfer domain 5
HTH_ARSR 1smt 23/13 71 Arsenical Resistance Operon Repressor 26 (24D)
HTH_XRE 1lmb 22/15 51 Helix-turn-helix XRE-family like proteins 7 (7D)
KISc 3kar 43/10 245 Kinesin motor, catalytic domain, ATPase 8
LIGANc 1dgs 44/7 284 NAD+ dependent DNA ligase adenylation domain 10 (1C)
LMWPc 1dlp 34/15 112 Low-molecular-weight phosphatase family 6 (6C)
MADS 1mnm 43/4 85 MCM1, Agamous, Deficiens, and serum response factor domain 6 (6D)
MBD 1qk9 31/6 61 Methyl-CpG binding domain 8 (8D)
Mog1 1eq6 37/4 165 Homolog to Ran-Binding Protein Mog1p 22 (22P)
MYSc 2mys 41/11 576 Myosin, large ATPases 16
PAX 1pdn 68/3 128 Paired Box domain 34 (34D)
PDZ 3pdz 24/15 62 PDZ domain 12 (12P)
PI3Kc 1e8x 26/10 272 Phosphoinositide 3-kinase, catalytic domain 35 (27C)
PIPKc 1bo1 36/6 264 Phosphatidylinositol phosphate kinases 45 (37C)
PLCc 1gym 28/8 189 Phospholipase C, catalytic domain 11 (11C)
PNPsynthase 1ho4 44/6 230 Pyridoxine 5�-Phosphate synthase domain 18 (18C)
POLXc 2bpf 40/6 294 DNA polymerase X family 13 (3C,10D)
PP2Ac 1aui 37/7 235 Protein phosphatase 2A homologs, catalytic domain 16 (13C)
PP2Cc 1a6q 26/13 178 Serine/threonine phosphatases, family 2C, catalytic domain 9 (9C)

(continued)
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30%, DNA/RNA-binding and protein–protein binding sites
are also predicted with limited accuracy.

We found that the success rate in detection of catalytic
sites is higher than for other types of functional sites, about
47% true positives recognized at the 5% false positive rate
(Fig. 2C). The increased prediction accuracy for catalytic
sites can be explained by the fact that catalytic sites appar-
ently are under stronger selection pressure (not counting
those cases where different functional groups could mediate
the same catalytic mechanisms in homologous enzymes
[Todd et al. 2002]), such that even families with a high
degree of sequence diversity exhibit strong conservation of
catalytic sites. As can be seen from Figure 2C, structure
information does not seem to assist the prediction of cata-
lytic sites. Examination of Table 1 shows that residue sol-
vent exposure is also not a very important factor in predict-
ing catalytic sites, which agrees with the previous observa-
tion that despite their polarity, catalytic residues have lower
solvent exposure compared to other residues (Bartlett et al.
2002).

It should be noted that there is great variety among dif-
ferent catalytic domains. They can vary in terms of the type
of enzymatic activity, the sizes of protein clefts, and inter-

acting ligands. These factors apparently make it difficult to
predict active sites using structure-based scoring function
with the fixed distance cutoff. As a consequence, the se-
quence-based scoring function alone gives more reliable
predictions for sufficiently diverse domain families where
conserved active sites become more apparent. On the other
hand, DNA/RNA binding and protein–protein binding sites
very often are nonspecific and form contiguous patches on
the surface of the protein. These factors apparently allow the
contact-solvent-accessibility scoring function to improve
detection of functional sites.

Statistical significance of functional site predictions

To compare the results obtained by our method to the out-
come of random assignments, we performed a binomial test
for each domain family. The number of trials in the bino-
mial test was equal to the overall number of functional
residues in a given domain alignment, and the probability of
success was calculated as a number of functional residues in
the alignment divided by the overall number of residues in
the alignment. Using the contact-solvent-accessibility scor-
ing function, we found that predictions of functional sites

Table 2. Continued

Name
Pdb
code %identity/Nobs Length Domain description

Number of
functional sites

PRCH 1prc 50/6 224 Photosynthetic reaction center complex, subunit H 6
PROF 1dlj 32/8 108 Profilin 17 (11P)
PTB 2nmb 17/11 113 Phosphotyrosine-binding domain, phosphotyrosine-interaction domain 10
PTPc 2shp 37/13 195 Protein tyrosine phosphatase 6 (6C)
PTS_IIA_fru 1a6j 31/7 118 PTS system, fructose/mannitol specific IIA subunit 2 (2C)
PTS_IIA_lac 1e2a 38/5 99 PTS system, lactose/cellobiose specific IIA subunit 7 (7C)
PTS_IIA_man 1pdo 27/9 100 PTS system, mannose/sorbose specific IIA subunit 7 (7C)
PTS_IIB_glc 1iba 32/7 81 PTS system, glucose/sucrose specific IIB subunit 7 (7C)
PTS_IIB_lac 1h9c 36/4 98 PTS system, lactose/cellobiose specific IIB subunit 7 (7C)
RA 1rax 20/11 66 RasGTP binding domain from guanine nucleotide exchange factors 13 (13P)
RhoGAP 1am4 26/13 138 GTPase-activator protein for Rho-like GTPases 5 (5P)
RPA 1ewi 19/9 48 Human Replication Protein A 7 (7D)
S4 1dm9 23/13 51 S4/Hsp/tRNA synthetase RNA-binding domain 5 (5D)
SAM 1b0x 21/13 57 Sterile alpha motif 5 (4P)
SEC14 1aua 18/13 129 Sec14p-like lipid-binding domain 16
Sec7 1pbv 26/10 178 Sec7 domain 22 (22C)
SERPIN 1ova 34/12 280 Serine proteinase inhibitor 14 (14P)
SH2 2shp 29/16 70 Src homology 2 domains 8
SNc 2sns 30/9 91 Staphylococcal nuclease homolog 7 (7C)
TBOX 1xbr 43/7 169 T-box DNA binding domain 25 (25D)
TNF 1a8m 23/9 103 Tumor necrosis factor 7 (7P)
Topo6_Spo 1d3y 32/8 250 DNA topoisomerase VI subunit A 4 (4C)
ToxGAP 1he1 41/4 116 GTPase-activating protein domain 15
UBCc 2ucz 29/13 129 Ubiquitin-conjugating enzyme B2 and UBC homologs 6 P (5P,1C)
VWA 1dzi 19/16 119 von Willebrand factor type A domain 5 (5P)
XPG 1a76 32/8 254 Xeroderma pigmentosum G N- and I-regions 38 (8C,32D)
ZnF_GATA 2gat 45/6 51 Zinc finger DNA binding domain 19 (17D)
ZnMc 1smp 31/12 91 Zinc-dependent metalloprotease 7 (7C)

Number of active sites, DNA/RNA binding and protein-protein binding sites are denoted by letters C, D, and P, respectively, and shown in parentheses.
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for 57% of domain families are significant with P-values
<0.05 (P-value here denotes the probability of finding an
equal or higher number of correctly predicted functional
sites purely from the binomial distribution). Values for do-
mains with annotated catalytic, DNA/RNA-binding, and
protein–protein binding sites were 76%, 35%, and 20%,
respectively. Sequence conservation scoring yielded signifi-
cant predictions of catalytic sites for 65% of domains, DNA/
RNA-binding sites for 24% of domains, and protein–protein
interfaces for 20% of domains (50% overall). In all cases the
site was predicted to be functional if it belonged to the top
5% of the most conserved sites in domain alignment.

These results are comparable to those of the 3D cluster
analysis employed by Landgraf et al. (2001). Those inves-
tigators identified 36% of all interface residues at a thresh-
old of less than 1% expected from reshuffled alignments
and 67% at the less stringent threshold of 10%. An auto-
mated method based on the ET approach found the correct
locations of catalytic residue clusters for 62 out of 80 en-
zymes (78% of clusters compared to 76% of catalytic do-
mains with significant predictions found by our method) for
multiple alignments with less than 30% identity (Aloy et al.
2001). Aloy et al. defined the predicted site/cluster to be
correct if the overlap between the volume of predicted clus-
ter and the volume of annotated functional site was more
than 50%. Their method was considered to find a right
prediction for a given protein if at least one of the predicted
functional clusters was correct.

Conserved structural features help to predict
functional residues for domain alignments
with low sequence diversity

Our test set can be considered rather heterogeneous in terms
of the sequence diversity of domain families (Table 2). For
domain families with low sequence diversity, sequence and
structure similarity is extensive and the degree of residue
conservation is high for all positions in alignments. Se-
quence profiles based on low-diversity alignments perform
relatively poorly in a database search (Panchenko and Bry-
ant 2002), and we similarly found that functional residue
identification is problematic in these cases. As shown in
Figure 3, for low-diversity domain alignments (where the
number of different amino acid types per column, Nobs is
less than 5 and average sequence identity is about 45%), the
average recognition rate (R0.05) is less than 0.2, whereas for
more diverse alignments (Nobs is greater than 15 and aver-
age sequence identity is about 20%), the average recogni-
tion rate is twice as high. In agreement with these results,
Aloy et al. (2001) reported that for multiple alignments with
sequence identity of more than 30%, their method of func-
tional site prediction has very limited applications.

We found that spatial averaging nonetheless improves
functional site recognition for low-diversity alignments. As

can be seen from Figure 4A, the site recognition rate in-
creases for low-diversity families upon including the struc-
ture-based term in the scoring function. The improvement in
accuracy exceeds 20% for this range of diversity, mostly
affecting domain families with catalytic and DNA/RNA-
binding sites. Moreover, including the solvent accessibility
term in the scoring function improves the prediction accu-
racy for families with medium sequence diversity (Nobs be-
tween 5 and 15), as shown in Figure 4B. Diverse domain
families with highly conserved functional sites, on average,
show a decline in recognition rate when structure-based
scoring function is used. For example, the recognition rate
for a very diverse family of metal-dependent phosphohy-
drolases (HDc; average percent identity 18%) drops from
100% recognition with the original sequence-based scoring
to 50% with contact-based scoring. This family has a par-
ticularly conserved HD-motif, which suggests that the con-
servation signal is high enough to be detected by sequence-
based scoring alone. Structure-based scoring in this case can
flatten the overall signal by averaging the conservation mea-
sure over neighboring residues.

Discussion

In an attempt to identify functionally important sites, we
present a method which quantifies the conservation of pro-
tein sites in terms of preserving amino acid types and local
structural environments. First, the scoring function, which
accounted for the local environment and/or surface expo-
sure of protein sites, was found to perform better than se-

Figure 3. The site recognition rate (R0.05) obtained with the sequence-
based scoring function is plotted for different sequence diversity ranges.
Domain family diversity is calculated as the average number of different
amino acid types per column in the CDD alignment. Results are shown as
a boxplot (Chambers 1998), where the central line in each box shows the
median recognition rate within a given bin of diversity, the upper and lower
boundaries of the box show the upper and lower quartiles, and the vertical
lines extend to a value 1.5 times the interquartile range. Outlier values
beyond these ranges are shown as individual points.
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quence-based scoring alone in many cases, serving mainly
as a filter to eliminate nonfunctional residue conserved po-
sitions. The largest improvement was observed for predict-
ing DNA/RNA binding sites. This observation is in agree-
ment with the previous studies which similarly demon-
strated that accounting for 3D clusters of conserved residues
reduced the number of false positives identified (Landgraf
et al. 2001).

Second, it was shown that the sequence divergence of
domain alignments is a prerequisite for the successful func-
tional prediction, and structurally conserved features help to
discriminate functional and nonfunctional sites for families
with low sequence diversity. Accordingly, to increase blind
prediction accuracy we can formulate several rules based on
these observations. The first: To predict functional residues
for low-diversity families, whenever possible diversify
them with more distantly related family representatives and,
if not possible, use a structure-based scoring function. The
second rule can be applied if the general function of the
domain family is known: Whenever possible use contact-
based and solvent accessibility-based scoring for predicting
DNA/RNA binding and protein–protein binding sites; for
catalytic sites use a contact-based scoring function for low-
diversity families and the original sequence-based scoring
function for all others. If a blind prediction of functional
residues is being attempted, the simple strategy would be to
apply these rules for initial family screening and then define
functional residues as those having conservation scores
among the top 7%, 6%, and 5% of conservation scores for
catalytic, DNA/RNA binding, and protein–protein binding
sites, respectively. These conservation score cutoffs corre-
spond approximately to the error rate of 5% false positives.

As we showed, spatial averaging does not always help the
function prediction, and prediction accuracy still remains
quite low. Madabushi et al. (2002) demonstrated that the

number of clusters (or size of the largest cluster) of func-
tional residues determined by the ET method was larger
than the number of clusters predicted by random simula-
tions for 98% of their test cases (at the significance level of
5%). It should be noted that this result does not imply that
the ET method is able to correctly identify active sites for
98% of test proteins at the 5% significance level. Similarly
to Landgraf et al. (2001), we showed that the accuracy of
functional site prediction, in fact, was far from reaching
100%. Applying ROC analysis we found that 47% of active
sites, 20% of DNA/RNA binding sites, and 14% of protein–
protein interfaces can be predicted at a 5% false positive
rate. We note that the limited accuracy of functional pre-
diction can be caused by the differences in functional speci-
ficity among homologous family members as well as by the
functional plasticity of protein molecules. Even proteins
sharing the same evolutionary origin and functional activity
may show variability in the physicochemical properties of
functional residues and their location in a 3D structure
(Todd et al. 2001, 2002; Lichtarge and Sowa 2002).

Materials and methods

A benchmark for evaluating the methods
of functional sites prediction

We selected 86 domain alignments from the curated Conserved
Domain Database (CDD), a current version of which is available
at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml (Marchler-
Bauer et al. 2002). Multiple alignments in the CDD have been
manually curated to reconcile sequence alignments with protein
3D structures and structure-structure alignments. Based on the
crystal structures and experimental data from the literature, con-
served functional sites have been annotated for each CDD domain
by inspection of protein–ligand, protein–DNA/RNA, and protein–
protein complexes for all structure representatives. Functionally

Figure 4. Improvement in the site recognition rate upon including the structural term in the scoring function is plotted vs. the sequence diversity of domain
families. The difference in recognition rate is calculated as the average recognition rate (R0.05) obtained with the contact-based scoring function (A) or
contact-solvent-accessibility scoring function (B) minus the average recognition rate for the sequence-based scoring function.
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important sites were defined as those residues making contacts
with a ligand or a macromolecule. CDD alignments represent
alignments of conserved core structures formed by presumably
homologous sites, and positions outside the conserved cores are
removed from the alignment, resulting in alignment lengths be-
tween 38 and 576 residues.

The selected test set covered a broad range of different func-
tional categories including 37 domains with annotated catalytic
sites, 17 domains with annotated DNA/RNA binding sites, 20
domains with annotated protein–protein binding sites, and do-
mains from other functional groups (domains containing disulfide
bonds and domains with less than two annotated functional sites
were excluded). Names of CDD families used in the test set to-
gether with their sequence diversity, length, the number and the
type of functional sites are listed in Table 2. By definition, CDD
alignments have at least one structural family representative,
whereas in our test set the number of structures per family ranged
from 1 to 15, with three structures per family on average.

Calculation of sequence conservation

We used two different measures to estimate the level of conser-
vation at each position in CDD alignments. The first measure,
information content, was based on counting the number of differ-
ent amino acid types per aligned column and inferring the rela-
tionships between amino acid types with the pseudocount method
(Altschul et al. 1997), where pseudocount frequencies were cal-
culated using the PAM70 amino acid substitution matrix. The
second measure of evolutionary conservation of different sites, the
substitution rate per site, was calculated using the PAML3.12
package (Yang 1997) with its implementation of the Jones, Taylor,
and Thornton amino acid substitution model (Jones et al. 1992),
where the variable substitution rates across sites were described
with the �-model. Phylogenetic trees required for this analysis
were constructed by the neighbor-joining method (Saitou and Nei
1987) with the PHYLIP package (Felsenstein 1989).

Scoring the clusters of conserved residues

For each position in the alignment, two regional conservation
scores were calculated. The first one represented the average over
conservation scores for residues located within a given distance
from each position “i” of the alignment, namely,

Ci
cont =

1

n �
j = 1,N

Cj�ij, ( 1)

where �ij is equal to 1 if residues i and j are in contact, and 0
otherwise. Cj is the residue conservation score of residue j, N is the
total number of positions in the alignment, and n is the number of
residues in contact with residue “i.” Contacts were defined be-
tween the virtual C� atoms (points 2.4 Å away from C� atom) of
residues separated along the chain by at least five peptide bonds
and having the distance less than a given distance cutoff (4, 5, 6,
7, 8, and 9 Å). It should be noted that contacts were calculated for
all structural representatives of domain alignments, and only con-
served contacts were used in the evaluation of Ccont. The contact
between positions i and j was defined as conserved if aligned
residues in these positions formed the contact in all structural
representatives. For those residues which did not make any con-
tacts, the original residue conservation value was assigned. Inter-
residue contacts conserved between all structural representatives

were shown to increase prediction accuracy for 60% of domain
families (for families with more than one structure) compared to
the scoring function based on one representative structure (data not
shown).

The second regional conservation score gave emphasis to sol-
vent accessible residues, because these residues are very often
involved in the formation of functionally important interfaces:

Ci
cont+ solv = Ci

cont�i
solv, ( 2)

where �solv is equal to 1, if solvent accessibility of position “i” is
greater than 0.05, and 0 otherwise. Reversing equation 2 and con-
sidering only buried residues in contact did not improve the pre-
diction accuracy (data not shown). The cutoff threshold of 0.05
was derived from an analysis of homologous protein structures
forming a conserved hydrophobic interior (Miller et al. 1987).
Solvent-accessible area was calculated by the DSSP algorithm
(Kabsch and Sander 1983), where solvent accessibility of residue
“X” was defined as the ratio of its solvent-accessible area in pro-
tein structure to that for extended tripeptide Gly-X-Gly. The sol-
vent accessibility of position “i” in a multiple alignment was cal-
culated by averaging solvent accessibility values in a given posi-
tion for all structural representatives.

Evaluation of prediction accuracy

To evaluate the accuracy of functional site predictions, we calcu-
lated the number of correctly predicted functional sites (true posi-
tives) and the number of incorrectly predicted functional sites
(false positives) found at different thresholds of conservation
score. True positives were identified as those functionally impor-
tant sites which had scores higher than a given score threshold.
False positives, in turn, were identified as sites with scores higher
than a given threshold, but unrelated to the functional activity of a
given domain family. To measure the performance of retrieval
methods, the truncated receiver operating characteristic (ROC) has
been widely used (Gribskov and Robinson 1996; Schaffer et al.
2001). A ROCn statistic was calculated as the sum of the number
of true positives found at 1,2,3, . . . n false positive levels (ti)
divided by the overall number of true positives (T): ROCn =
(�I=1, . . . , n ti)/nT. Here, the total number of true positives (T) was
calculated as the total number of annotated functionally important
sites in a given domain family, whereas the total number of false
positives was equal to the difference between the total number of
sites in the alignment and the number of functional sites annotated
for a family. Knowing the number of true positives detected and
overall number of true positives, it is possible to calculate the
fraction of true positives detected and, correspondingly, the frac-
tion of false positives detected, and plot them in the order of
decreasing score threshold (see Fig. 2). The false positive cutoff
“n” was set to 30, which corresponds approximately to the first
quarter of false positives detected. In those cases where the pre-
diction performance was compared for different families with the
different numbers of false positives, the R0.05 was used.
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